A Symmetrical Circuit Model Describing All Kinds of Circuit Metamaterials

نویسندگان

  • T. J. Cui
  • H. F. Ma
  • R. Liu
  • B. Zhao
  • Q. Cheng
  • J. Y. Chin
چکیده

We present a generally symmetrical circuit model to describe all kinds of metamaterials with effective permittivity and permeability. The model is composed of periodic structures whose unit cell is a general T-type circuit. Using the effective medium theory, we derive analytical formulations for the effective permittivity and effective permeability of the circuit model, which are quite different from the published formulas [1, 2]. Rigorous study shows that such a generally symmetrical model can represent right-handed materials, left-handed materials, pure electric plasmas, pure magnetic plasmas, electric-type and magnetic-type crystal bandgap materials at different frequency regimes, with corresponding effective medium parameters. Circuit simulations of real periodic structures and theoretical results of effective medium models in this paper and in [1] and [2] are presented. The comparison of such results shows that the proposed medium model is much more accurate than the published medium model [1, 2] in the whole frequency band.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Design of a Single-Layer Circuit Analog Absorber Using Double-Circular-Loop Array via the Equivalent Circuit Model

A broadband Circuit Analogue (CA) absorber using double-circular-loop array is investigated in this paper. A simple equivalent circuit model is presented to accurately analyze this CA absorber. The circuit simulation of the proposed model agrees well with full-wave simulations. Optimization based the equivalent circuit model, is applied to design a single-layer circuit analogue absorber using d...

متن کامل

بررسی اتلاف در مدار کوانتومی LC

In this article we consider the resistance of a quantum LC circuit as a heat bath. The heat bath can be modeled by a collection of quantum harmonic oscillators with a continuum of frequencies. By using the minimal coupling method between the circuit and the field describing the environment, the process of energy dissipation and probability transitions between the energy levels of the quantum c...

متن کامل

Closed-Form Solutions for Broad-Band Equivalent Circuit of Vertical Rod Buried in Lossy Grounds Subjected to Lightning Strokes

Abstract— In this paper, input impedance of a vertical rod under lightning stroke is first computed by applying the method of moments (MoM) on the Maxwell’s equations. The circuit model is then achieved through applying modified vector fitting (MVF) on the computed input impedance. After then the equivalent circuit is again extracted for a few values of soil conductivity and rod radius. Finally...

متن کامل

Equivalent Circuit Model for Square Ring Slot Frequency Selective Surface

An equivalent circuit model for predicting the frequency response of a square ring slot frequency selective surface (SRS-FSS) for normal incidence is described. The proposed FSS consists of an array of square patches centered within a wire grid. The presented circuit model is formed by the impedance of the wire grid that is parallel with the impedance of the patch array, also the mutual couplin...

متن کامل

Simulation and Genetic Algorithms for Optimizing Comminution Circuit at Gol-e-Gohar Iron Plant (RESEARCH NOTE)

simulation optimization is a scientific tool that is widely used to design and optimize comminution circuits in mineral processing plants. In this research, first of all, in order to  determine the suitable d80 for cicuit hydrocyclone underflow, the requiremed parameters of simulator (residence time distribution, breakage function, selection function and Plitt’s model calibration) were determin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008